Assignment 6

1. Show that f is continuous from (X, d) to (Y, ρ) if and only if $f^{-1}(F)$ is closed in X whenever F is closed in Y.
2. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R} :
(a) $[1,2) \cup(2,5) \cup\{10\}$.
(b) $[0,1] \cap \mathbb{Q}$.
(c) $\bigcup_{k=1}^{\infty}(1 /(k+1), 1 / k)$.
(d) $\{1,2,3, \cdots\}$.
3. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R}^{2} :
(a) $R \equiv[0,1) \times[2,3) \cup\{0\} \times(3,5)$.
(b) $\left\{(x, y): 1<x^{2}+y^{2} \leq 9\right\}$.
(c) $\mathbb{R}^{2} \backslash\{(1,0),(1 / 2,0),(1 / 3,0),(1 / 4,0), \cdots\}$.
4. Describe the closure and interior of the following sets in $C[0,1]$:
(a) $\{f: f(x)>-1, \forall x \in[0,1]\}$.
(b) $\{f: f(0)=f(1)\}$.
5. Let A and B be subsets of (X, d). Show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
6. Show that $\bar{E}=\{x \in X: d(x, E)=0\}$ for every non-empty $E \subset X$.
7. Show that f is continuous from (X, d) to (Y, ρ) if and only if for every $E \subset X, f(\bar{E}) \subset \overline{f(E)}$.
